Born Knowing: Tentacled Snakes Innately Predict Future Prey Behavior
نویسنده
چکیده
BACKGROUND Aquatic tentacled snakes (Erpeton tentaculatus) can take advantage of their prey's escape response by startling fish with their body before striking. The feint usually startles fish toward the snake's approaching jaws. But when fish are oriented at a right angle to the jaws, the C-start escape response translates fish parallel to the snake's head. To exploit this latter response, snakes must predict the future location of the fish. Adult snakes can make this prediction. Is it learned, or are tentacled snakes born able to predict future fish behavior? METHODS AND FINDINGS Laboratory-born, naïve snakes were investigated as they struck at fish. Trials were recorded at 250 or 500 frames per second. To prevent learning, snakes were placed in a water container with a clear transparency sheet or glass bottom. The chamber was placed over a channel in a separate aquarium with fish below. Thus snakes could see and strike at fish, without contact. The snake's body feint elicited C-starts in the fish below the transparency sheet, allowing strike accuracy to be quantified in relationship to the C-starts. When fish were oriented at a right angle to the jaws, naïve snakes biased their strikes to the future location of the escaping fish's head, such that the snake's jaws and the fish's translating head usually converged. Several different types of predictive strikes were observed. CONCLUSIONS The results show that some predators have adapted their nervous systems to directly compensate for the future behavior of prey in a sensory realm that usually requires learning. Instead of behavior selected during their lifetime, newborn tentacled snakes exhibit behavior that has been selected on a different scale--over many generations. Counter adaptations in fish are not expected, as tentacled snakes are rare predators exploiting fish responses that are usually adaptive.
منابع مشابه
The brain and behavior of the tentacled snake.
Tentacled snakes (Erpeton tentaculatum) are aquatic predators that feed exclusively on fish. They have a unique pair of tentacles projecting from the face and an unusual J-shaped hunting posture. These features have been the subject of speculation for over a century. In a series of behavioral studies, tentacled snakes were found to exploit fish escape responses by startling fish toward their st...
متن کاملTentacled snakes turn C-starts to their advantage and predict future prey behavior.
Fish are elusive prey with a short-latency escape behavior--the C-start--initiated to either the left or right by a "race" between 2 giant Mauthner neurons in the fish brainstem. Water disturbances usually excite the ipsilateral neuron, which massively excites contralateral motor neurons, resulting in a rapid turn away from striking predators. Here, it is reported that tentacled snakes (Erpeton...
متن کاملEvolution of brains and behavior for optimal foraging: a tale of two predators.
Star-nosed moles and tentacled snakes have exceptional mechanosensory systems that illustrate a number of general features of nervous system organization and evolution. Star-nosed moles use the star for active touch--rapidly scanning the environment with the nasal rays. The star has the densest concentration of mechanoreceptors described for any mammal, with a central tactile fovea magnified in...
متن کاملFunction of the appendages in tentacled snakes (Erpeton tentaculatus).
We investigated the function of the tentacles in aquatic, piscivorous tentacled snakes (Erpeton tentaculatus) by examining anatomy, peripheral innervation, and the response properties of primary afferents. We also investigated visual and somatosensory responses in the optic tectum and documented predatory strikes to visual stimuli and under infrared illumination. Our results show the tentacles ...
متن کاملChemosensory response in stunted prairie rattlesnakes Crotalus viridis viridis
Rattlesnakes use chemical stimuli in ambush site selection and for relocation of envenomated prey through strike-induced chemosensory searching. Shifts in responsiveness to prey chemicals have been documented in many snakes, and often correlate with prey commonly taken as snakes increase in age and size as well as geographical locations of the species. For instance, neonate rattlesnakes that pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2010